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Growth of E-commerce

E-commerce retailers

IoT Logistics Covid-19
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Source: The Korea Herald (2021)

Online shopping hits record high in Q2 
amid pandemic

Source: GlobalData (2020) Source: Consumer News (2020)

Number of new e-commerce retailers 
are increased by 145% in Coupang
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E-commerce retailers’ properties

E-commerce retailers (Retailers)
1. Low-capital business

2. Warehouse with small space

Traditional solutions
1. Build warehouse infrastructure→ High setup cost

2. Lease warehouse from traditional warehouse operators (Long-term)→ Low flexibility
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On-demand warehousing

Warehouse Providers
Provide Services

On-Demand Warehousing 
SystemMake Connections

Retailers
Need Services
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Source: FLEXE.com
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How is on-demand warehousing different?

Low-risk way to test new strategies and keep up with rising customer 
expectations

• Connect warehouse providers who have excess capacity and retailers who need 
flexible solutions

• Secure warehousing and fulfillment solutions quickly

• Create a distribution-network strategy that’s as dynamic as retailer’s business

• Match varying demand and manage the unexpected throughout the year

7
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Research questions

Decision Maker: E-commerce retailer

Shared Warehouse

2021-03-01
Start date

2021-03-08
End date

7days
Duration

20Capacity
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• Total cost

• Utilization of warehouses

RQ1: Advantages of on-demand
warehousing system

• Inherent uncertainty

• Effective solution 
approach

RQ2: Supply chain design

• Varying commitment cost

• Available shared 
warehouses

RQ3: Warehouse commitments 
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Problem description

EmergencyRetailer Provider

Customer (Demand)

Supply

Time period = t

t-1

Commitment period decision

t+1
Operational decision

10

Suppliers & providers’ warehouses 
selection

: first-stage decision

: recourse decision
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Problem description

How long do we use the provider’s warehouse?

First-stage decision
Suppliers selection & Commitment periods decision

Ø Suppliers and providers’ warehouses selection

Ø Warehouse (Retailer, Provider, Emergency) 

Cheap Expensive

 = ||  = 

11

commitment cost:  


:commitment cost for a day

:the period of commitment

:discount factor 

(Long term) (Short term)
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Problem description

Recourse decision
Operational decision

Ø Inventory holding decision in warehouse 
(Retailer, Provider, Emergency)

Ø Transportation between warehouses, suppliers, and customers

Ø Stockout

Holding Cost per period

Cheap Expensive

Retailer EmergencyProvider

12
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Assumptions

• Stockout → lost sales

• No lead time

• Demand 

• Supply

• Capacity of warehouses

• Maximum period of commitment
Given

13

Uncertain
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Nomenclature
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UncertaintyIndices and sets Parameters
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Nomenclature
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First-stage decision

Recourse decision

Decision variables
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Two-stage stochastic programming model  
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Commitments

Supply

Optimal value of the 
second stage recourse 
problem

Commitment cost for 
provider’s warehouses

Investment cost for 
suppliers

First stage problem
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Two-stage stochastic programming model  

17

(9) - (13) : Distribution constraints

(14) - (17) : Capacity constraints

Inventory holding cost

Delivery service cost for a logistics company

Stockout cost

Transportation cost

Second stage recourse problem
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Two-stage stochastic programming model  
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Compact representation

First stage problem: Second stage recourse problem:



SCM Lab.

Ⅲ. Solution Approach



SCM Lab.

/ 44
Sample average approximation
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True problem Sample Average Approximation (SAA) problem

• Sampling methodology → Obtain estimates of upper and lower bound
on the optimal value of the True problem

• Secure →  Generate a sample of scenarios (N independent scenarios)
→ Monte Carlo sampling

• SAA problem True problem (Optimal objective value:       )
Approximation
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Lower bound estimation
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[ SAA problem (sample m) ]

• Secure →  Generate M independent sample sets of scenarios
→  Monte Carlo sampling

• ewf → Optimal objective value

• → Optimal solution
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• Lower bound

• Variance of              

• Solution from the

Lower bound estimation
22

(Derived from Central Limit Theorem)



SCM Lab.

/ 44
Upper bound estimation
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, ,

• Upper bound

• Variance of              

• Determine the solution for upper bound
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Optimality gap estimation
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• Optimality gap of the solution

• Variance of              

• If ) <

Otherwise)  

See Appendix A.

, and repeat the process
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• value

Why use Benders decomposition?
25

      

 ⊺  ⊺  ⊺
( ⊺ ,  ⊺ )

( ⊺ ,  ⊺ )
( ⊺ ,  ⊺ )

Stage1 Stage2

Dual

• ewf → Optimal objective value Spend a lot of time to compute with small size N

• value

ü With many realizations of scenarios, the two-stage 
stochastic problems become large

ü Utilize the special structure (block diagonal structure) 
of stochastic programs

Benders decomposition
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Stage 1

Stage 2

Benders decomposition
26

Reformulation

Full master problem
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Benders decomposition
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• Number of variables has been reduced substantially

• Number of constraints can be extremely large due to the 
large size of extreme points 

Ø Overcome using cutting plane method 
(i.e., Benders decomposition)

Ø Involve only subsets of Constraint (41)

Full master problem (reformulation)
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Benders decomposition
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Sub problem for scenario  (SUB())Master problem (MP)

Optimality cut
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Acceleration method for Benders decomposition
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,

Initialization problem (EVP)
(Typical method)

• Use any feasible solution of dual variables to generate 
initial optimality cut

(Acceleration method)
• Step 1: Solve EVP with Branch and Bound algorithm 

until the upper bound and lower bound gap is within 5%.

• Step 2: Get optimal solution .

• Step 3: Solve SUB() with obtained initialization 
solution .

• Step 4: Get optimal dual solutions
.

• Step 5: Generate initial optimality cut with above 
optimal dual solutions.

See Appendix B.
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Ⅳ. Computational Experiments
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Description of the test instances
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Test instances specifications (N= 40)

Emergency warehouse

Suppliers

Provider’s warehouse

Retailer's warehouse
Distributions for stochastic parameters value

XY plane of test instance 14

* Derived from the real-world E-commerce data
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Performance of the Benders decomposition

32

Gap (avg) Gap (max) CPUs Itr

See Appendix C.

* Solver : Xpress-Optimizer

* TBD : Benders decomposition (Typical method) * ABD : Benders decomposition (Acceleration method)

*
* # of   : Number of times experiments cannot be solved within time limit 

* CPUs : Computation times (seconds) * Itr : Number of iterations



SCM Lab.

/ 44
Performance of the Benders decomposition
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Comparisons of the TBD and ABD

• ABD could generate a good initial cut in the 
primary stage

• ABD could converge faster than TBD

 = 0.03
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Quality of stochastic solution
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* EVPI : UB – WS (expected value of perfect information)

* EEV : expected result of using the EVS * WS : wait-and-see solution * EVS : EVP solution

* VSS : EEV – UB (value of the stochastic solution)

Optimality gap of stochastic solution and EVSPerformance of sample average approximation
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Effects of on-demand warehousing system on supply chain
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• Number of available providers’ warehouses ↑

⇒ Total cost ↓

⇒ Stockout cost ↓

⇒ Transportation cost ↓

⇒ Delivery cost ↑

Impact of different number of available providers’ warehouses on cost

*

*

*

*

*

*

*
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Sensitivity analysis on the commitment cost parameter
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Share of the total cost for each type of cost varying the commitment costUtilization and total cost varying the commitment cost
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Contributions
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Two-stage stochastic 
programming model

On-demand 
warehousing system

Evaluation of 
performances

Benders decomposition
& MIP solver

Benders decomposition
(acceleration method)

Sample average
approximation
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Further studies
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Real-world data Test problem instance

Reduce
computation time

Accommodate other 
types of uncertainties Capacity of warehouses

Valid inequalities
& Pareto optimal cut
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Appendix A. Sample average approximation
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Appendix B. Benders decomposition with acceleration

43



SCM Lab.

/ 44Appendix C. Computation results of the proposed algorithm 44



Supply Chain Management 
Laboratory

SEOUL 
NATAIONAL
UNIVERSITY

Thank you
Q&A


